SYNTHESES AND REACTIVITY OF PENTACHLOROPHENYLPALLADIUM(I) DERIVATIVES. MOLECULAR STRUCTURE OF $\mathrm{Pd}_{2}(\mu-\mathrm{dppm})_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}{ }^{*}$

P. ESPINET, J. FORNIES^, C. FORTUÑO, G. HIDALGO, F. MARTINEZ, M. TOMAS,
Departamento de Quimica Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C. 50009 Zaragoza (Spain)

and A.J. WELCH
Department of Chemistry, Uniwersity of Edinburgh, Edinburgh EH9 3JJ (Great Britain)
(Received June 10th, 1986)

Summary

The syntheses of $\left[\mathrm{XPd}(\mu-\mathrm{dppm}){ }_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right]\left(\mathrm{X}=\mathrm{Cl}, \mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ are described. Other neutral halogeno-pseudohalogeno-palladium(I) complexes $\left[\mathrm{XPd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}-\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right](\mathrm{X}=\mathrm{Br}, \mathrm{I}, \mathrm{SCN}$ or CNO$)$ have been obtained from $\left[\mathrm{ClPd}(\mu-\mathrm{dppm})_{2} \operatorname{Pd}\left(\mathrm{C}_{6}-\right.\right.$ Cl_{5})] by metathetical reactions, and SnCl_{2} inserts into the $\mathrm{Pd}-\mathrm{Cl}$ bond to give the $\mathrm{Pd}-\mathrm{SnCl}_{3}$ compound. The cationic derivatives $\left[\mathrm{LPd}(\mu-\mathrm{dppm})_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{BPh}_{4}(\mathrm{~L}=$ $\mathrm{PPh}_{3}, \mathrm{P}(\mathbf{O P h})_{3}, \mathrm{AsPh}_{3}, \mathrm{SbPh}_{3}$, tht $)$ have also been prepared. SO_{2} or $\mathrm{RN}_{2}{ }^{+}$insert into the $\mathrm{Pd}-\mathrm{Pd}$ bond of $\left[\mathrm{ClPd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right]$ to give A -frame $\mathrm{Pd}^{\mathrm{II}}$ complexes, but do not react with $\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{Pd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$. The nature of the products of the reactions of $\operatorname{XPd}(\mu-\mathrm{dppm})_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ with $\mathrm{RNC}(\mathrm{R}=\mathrm{t}-\mathrm{Bu}, \mathrm{Cy}$, $p-\mathrm{Tol}, \mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{NC}$) depend on the isonitrile used and the reaction conditions.

The molecular structure of $\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \operatorname{Pd}(\mu-\mathrm{dppm})_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ has been established by a single crystal X-ray study. The crystals are triclinic, space group $P \overline{1}$, with 2 molecules of the $2 \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ solvate in a cell of dimensions a 12.986(4), b 13.213(5), с 21.254(6) \AA, α 90.49(3), β 89.204(25), $\gamma 102.86(3)^{\circ}, V 3554.8 \AA^{3}$. Of 9156 data collected on a four-circle diffractometer, 4474 observed reflections were used in the refinement ($R=0.0902$). The complex has no crystallographically imposed symmetry, but overall is close to $D_{2 d}$. The Pd-Pd bond length is $2.6704(21)$ \AA.

[^0]
Introduction

We recently described the synthesis [1] and reactions [1,2] of some binuclear pentafluorophenylpalladium(1) derivatives with dppm as bridging ligand, and noted some differences in reactivity between these complexes [XPd $(\mu \text {-dppm })_{2} \mathrm{Pd}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \text { or }}$ $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Pd}(\mu-\mathrm{dppm})_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ and the related halogeno derivatives $[\operatorname{XPd}(\mu$ dppm $)_{2} \mathrm{PdX}$ [3]. We describe here the synthesis of the related pentachlorophenylpalladium(I) derivatives. $\left(\mathrm{XPd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right), \quad\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{Pd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}-\right.$ $\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$) and their reactivity in the formation of cationic complexes and insertion of species such as $\mathrm{RNC}, \mathrm{CO}, \mathrm{SO}_{2}$ and $\mathrm{N}_{2} \mathrm{R}^{+}$into the $\mathrm{Pd}-\mathrm{Pd}$ bond.

We also report the structure of $\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{Pd}(\mu \text {-dppm })_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ as established by an X-ray diffraction study.

Results and discussion

The pentachlorophenylpalladium(I) complexes ($\mathrm{XPd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right), \mathrm{X}=\mathrm{Cl}$ (1), $\mathrm{C}_{6} \mathrm{Cl}_{5}$ (2)) were prepared by a redox condensation between $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ and $\operatorname{PdX}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\eta^{1} \text {-dppm }\right)_{2}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ in oxygen-free dichloromethane (see Experimental), according to eq. 1.
$\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}+2 \mathrm{PdX}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\eta^{1} \text {-dppm }\right)_{2} \rightarrow$

$$
\begin{equation*}
2 \mathrm{XPd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)+3 \mathrm{dba} \tag{1}
\end{equation*}
$$

($\mathrm{X}=\mathrm{Cl}$ (1), $\mathrm{C}_{6} \mathrm{Cl}_{5}$ (2))
The structure of complex 2 was established by a single crystal X-ray diffraction study as discussed later.

Scheme 1 shows the reactions of complex 1, and analytical, and conductivity data are listed in Table 1.

Other pentachlorophenylpalladium(I) complexes (3-6) can be obtained by treating complex 1 with an excess of the corresponding salts ($\mathrm{LiBr}, \mathrm{NaI}, \mathrm{KSCN}, \mathrm{KOCN}$) in methanol/water (see Scheme 1(a)) at room temperature. Molecular weight determinations on some of these complexes are consistent with the proposed formulae (1, 1216 (1266); 2, 1408 (1480); 3, 1344 (1311); 4, 1358 (1358)). The reaction between equimolecular amounts of complex 1 and SnCl_{2} gives the $\mathrm{SnCl}_{3}{ }^{-}$ derivative (7) as a result of the insertion of SnCl_{2} into the $\mathrm{Pd}-\mathrm{Cl}$ bond (rather than into the $\mathrm{Pd}-\mathrm{Pd}$ bond) as was observed with other Pd^{I} [4] or Pt^{I} [5] complexes.

Complex 1 is unreactive towards the formation of cationic complexes and treatment of $\left[\mathrm{ClPd}(\mu \text { - } \mathrm{dppm})_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right]$ with an excess of $\mathrm{L}(\mathrm{L}=\mathrm{P}, \mathrm{As}, \mathrm{S}$ donor ligands) in methanol and NaBPh_{4} (at room temperature or under reflux) leaves the starting material unchanged. This contrasts with the behaviour of $\mathrm{ClPd}(\mu$ dppm $)_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ [1] and $\mathrm{ClPt}(\mu-\mathrm{dppm})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ [6] which in the presence of L $\left(\mathrm{L}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{S}\right.$ donor) and NaBPh_{4} readily give the cationic derivatives $\left(\mathrm{BPh}_{4}\right)\left[\mathrm{LM}(\mu \text {-dppm })_{2} \mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$. Neither of the complexes 3 and 4 are useful for the preparation of cationic complexes, but complex $6(\mathrm{NCO}) \mathrm{Pd}(\mu \text {-dppm })_{2} \mathrm{Pd}_{\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)}$ reacts in methanol at room temperature with equimolecular amounts of L and NaBPh_{4} to give the corresponding cationic derivatives ($\mathrm{L}=\mathrm{PPh}_{3}$ (8), $\mathrm{P}(\mathrm{OPh})_{3}(9)$, AsPh_{3} (10), SbPh_{3} (11) tht (12)) (see Scheme 1(h)).

All complexes show typical IR absorptions of the dppm and $\mathrm{C}_{6} \mathrm{Cl}_{5}$ [7] groups.

SCHEME 1
(21)
(i)

$$
\xrightarrow{(e)}
$$

$$
\begin{gathered}
(R=p-T O 1(18) \\
C y(19), t-B u(20))
\end{gathered}
$$

(s)

TABLE 1
ANALYTICAL RESULTS, MOLAR CONDUCTIVITIES ($\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$) AND RELEVANT IR ABSORPTIONS (cm^{-1})

Complex	Analyses (Found (calcd.) (\%))				$\Lambda_{M}{ }^{a}$	$\boldsymbol{\nu}(\mathrm{C} \equiv \mathrm{N})$	$\nu(\mathrm{C}=\mathrm{N})$	Other
	C	H	N	C1				
$\overline{\mathrm{ClPd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathbf{1})}$	$\begin{gathered} 53.0 \\ (53.0) \end{gathered}$	$\begin{gathered} \hline 3.8 \\ (3.7) \end{gathered}$	-	$\begin{gathered} \hline 16.5 \\ (16.8) \end{gathered}$	no cond.	-	-	$225{ }^{\text {b }}$
$\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{Pd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathbf{2})$	$\begin{gathered} 50.4 \\ (50.3) \end{gathered}$	$\begin{gathered} 3.1 \\ (3.0) \end{gathered}$	-	$\begin{gathered} 24.0 \\ (24.0) \end{gathered}$	no cond.	-	-	-
$\operatorname{BrPd}(\mu-\mathrm{dppm}){ }_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathbf{3})$	$\begin{gathered} 51.8 \\ (51.3) \end{gathered}$	$\begin{gathered} 3.5 \\ (3.4) \end{gathered}$	-	c	Insol.	-	-	-
$\mathrm{IPd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(4)$	$\begin{gathered} 49.1 \\ (49.5) \end{gathered}$	$\begin{gathered} 3.2 \\ (3.3) \end{gathered}$	-	$\begin{gathered} 13.3 \\ (13.1) \end{gathered}$	no cond.	-	-	-
$(\mathrm{SCN}) \mathrm{Pd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(5)$	$\begin{gathered} 51.8 \\ (52.1) \end{gathered}$	$\begin{gathered} 3.3 \\ (3.4) \end{gathered}$	$\begin{gathered} 1.0 \\ (1.1) \end{gathered}$	$\begin{gathered} 14.3 \\ (13.8) \end{gathered}$	no cond.	-	-	2085 "
$(\mathrm{OCN}) \mathrm{Pd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(6)$	$\begin{gathered} 53.9 \\ (54.8) \end{gathered}$	$\begin{gathered} 3.2 \\ (3.5) \end{gathered}$	$\begin{gathered} 1.0 \\ (1.1) \end{gathered}$	$\begin{gathered} 14.8 \\ (14.0) \end{gathered}$	no cond.	-	-	$2175{ }^{\text {e }}$
$\mathrm{Cl}_{3} \mathrm{SnPd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(7)$	$\begin{gathered} 46.9 \\ (46.2) \end{gathered}$	$\begin{gathered} 3.3 \\ (3.0) \end{gathered}$	-	(no cond.	-	-	307,285 ${ }^{\text {n }}$
$\left[\mathrm{Ph}_{3} \mathrm{PPd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{BPh}_{4}(\mathbf{8})$	$\begin{gathered} 64.5 \\ (64.8) \end{gathered}$	$\begin{gathered} 4.1 \\ (4.4) \end{gathered}$	-	$\begin{gathered} 9.5 \\ (9.7) \end{gathered}$	74	-	-	610^{\prime}
$\left[(\mathrm{PhO})_{3} \mathrm{PPd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{BPh}_{4}{ }^{(9)}$	$\begin{gathered} 63.6 \\ (63.3) \end{gathered}$	$\begin{gathered} 4.5 \\ (4.3) \end{gathered}$	-	$\begin{aligned} & 10.6 \\ & (9.5) \end{aligned}$	73	-	-	610^{\prime}
$\left[\left(\mathrm{Ph}_{3} \mathrm{As}\right) \mathrm{Pd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{BPh}_{4}(\mathbf{1 0})$	$\begin{gathered} 63.6 \\ (63.4) \end{gathered}$	4.2 (4.3)	-	$\begin{gathered} 9.6 \\ (9.5) \end{gathered}$	69	-	-	610^{f}
$\left[\left(\mathrm{Ph}_{3} \mathrm{Sb}\right) \mathrm{Pd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{BPh}_{4}(\mathbf{1 1})$	$\begin{gathered} 62.0 \\ (61.8) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.2) \end{gathered}$	-	$\begin{gathered} 9.8 \\ (9.3) \end{gathered}$	69	-	-	610^{f}
$\left[(\right.$ ht $) \mathrm{Pd}\left(\mu\right.$-dppm) $\left.{ }_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{BPh}_{4}(\mathbf{1 2})$	$\begin{gathered} 61.8 \\ (61.6) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.4) \end{gathered}$	-	$\begin{gathered} 9.8 \\ (10.8) \end{gathered}$	73	-	-	$610{ }^{\prime}$

${ }^{a}$ In acetone solution, ca. $5 \times 10^{-4} \mathrm{M} .{ }^{b} \nu(\mathrm{Pt} \cdots \mathrm{Cl}) .{ }^{c}$ The presence of Br^{-}prevents determination of $\mathrm{Cl}^{-} .{ }^{d} \nu(\mathrm{C} \equiv \mathrm{N}), \mathrm{SCN}$ group [11]; ${ }^{c} \nu_{\mathrm{a}}(\mathrm{NCO})[11] .{ }^{f} \mathrm{BPh}{ }_{4} .{ }^{8} \mathrm{No}$ satisfactory chlorine analysis was obtained probably owing to difficulties in the combustion. ${ }^{h} \mathrm{SnCl}_{3}{ }^{-}$[12]. ${ }^{i} \mathrm{BF}_{4}{ }^{-} \quad$ [8]. ${ }^{j} \nu_{\text {asym }}(\mathrm{SO})_{2}$ and $\nu_{\text {sym }}\left(\mathrm{SO}_{2}\right)$ [10]. ${ }^{k} \mathrm{Other}$ bands in this region are probably due to the phenyl ring; their intensities increased upon insertion. We list both types of absorption. ${ }^{\prime} \nu(\mathrm{CO})$ of acetone solvate at $1718 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR integration shows that 0.75 molecules of acetone are present. ${ }^{m} \mathrm{ClO}_{4}^{-}$[26].

Complex 1 shows a weak absorption at $225 \mathrm{~cm}^{-1}$ assigned to $\boldsymbol{\nu}(\mathrm{Pd}-\mathrm{Cl})$, in the range found for other palladium(I) derivatives [1], and clearly shifted to lower energies compared to those for the precursor $\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\eta^{1}-\mathrm{dppm}\right)_{2}\left(302 \mathrm{~cm}^{-1}\right)$, suggesting a fairly high trans-influence of the $\mathrm{Pd}-\mathrm{Pd}$ bond. The corresponding $\nu(\mathrm{Pd}-\mathrm{Br})$ or $\nu(\mathrm{Pd}-\mathrm{I})$ bands are expected to lie outside the range of our instrument.

Some relevant IR absorptions for complexes 1-12 are shown in Table 1.

Insertion reactions

Complex 1 reacts with the electrophilic species $\left[p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right] \mathrm{BF}_{4}$ and SO_{2} to give the asymmetric A-frame compounds 13 and 14 by insertion into the $\mathrm{Pd}-\mathrm{Pd}$ bond (see Scheme 1(c,d)). Furthermore, when CO is bubbled through a solution of complex 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 45 min , the presence of an inserted carbonyl compound (eq. 2) can be detected in the IR spectrum of the solution ($\nu(\mathrm{CO}) \sim 1708 \mathrm{~cm}^{-1}$), but

all attempts to isolate such a compound only gave the starting material, which is consistent with the usual lability of such palladium carbonyl derivatives [3d].

The insertion of SO_{2} into the $\mathrm{Pd}-\mathrm{Pd}$ bond is also reversible [3f], and although complex 14 is stable at room temperature it loses SO_{2} at $100^{\circ} \mathrm{C}$ to regenerate complex 1. Complex 14 crystallizes with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left({ }^{1} \mathrm{H}\right.$ NMR), but when an orange sample of 14 is kept in an oven at $80^{\circ} \mathrm{C}$ the yellow complex 1 is re-formed.

The IR spectra of complex 13 shows a strong and broad absorption at $1060 \mathrm{~cm}^{-1}$ due to the counterion $\mathrm{BF}_{4}^{-}[8]$, and the $\nu(\mathrm{Pd}-\mathrm{Cl})$ band appears at $305 \mathrm{~cm}^{-1}$, consistent with the increase of the formal oxidation state of the palladium [3f] and with the cationic nature of the compound [6]. Complex 14 shows two absorptions, at 1150 s and 1018 s [9] cm^{-1}, due to the symmetric and asymmetric $\nu(\mathrm{S}-\mathrm{O})$ stretching frequencies respectively [$3 \mathrm{f}, 10$]; the increase in the $\boldsymbol{\nu}(\mathrm{Pd}-\mathrm{Cl})$ stretching frequency to $270 \mathrm{~cm}^{-1}$ for 14 compared with $225 \mathrm{~cm}^{-1}$ for 1 is related to the increase of the formal oxidation state upon insertion of SO_{2} into the $\mathrm{Pd}-\mathrm{Pd}$ bond [3f,2].

Isonitriles can also be inserted into the metal-metal bond but the reaction of complex 1 with RNC is complicated, and either insertion, to give $[\operatorname{ClPd}(\mu-$ $\left.\mathrm{dppm})_{2}(\mu-\mathrm{RNC}) \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right]$, or coordination to give $[\mathrm{RNCPd}(\mu-\mathrm{dppm}) \operatorname{Pd}-$ $\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{Cl}$, can occur depending on the nature of group R and of the solvent used for the reaction.

Complex 1 reacts in dichloromethane with a stoicheiometric amount of p-TolNC and the insertion product 15 can be isolated from the solution. However the IR

spectrum of the dichloromethane solution of 15 shows bands assignable to $\nu(\mathrm{C}=\mathrm{N})$ and to $\nu(\mathrm{C} \equiv \mathrm{N})\left(2146 \mathrm{~cm}^{-1}\right)$, thus suggesting that in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution the insertion and the coordination species (eq. 3) are in equilibrium, but that only the insertion product 15 can be crystallized out. The conductivity of an acetone solution of $15\left(30 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)$ is consistent with the existence of such an equilibrium.

The isonitriles CyNC and t-BuNC react with complex 1 in benzene (which being a non-polar solvent should favour the formation of insertion products [6]) to mixtures of the coordinated complex and the starting material but not the insertion product. In order to complete the formation of the coordinated complexes 16 and 17 the reaction must be carried out in acetone and with an excess of the isonitrile. The reaction of complex 1 with $\mathrm{RNC}(\mathrm{R}=\mathrm{Cy}(19)$, $\mathrm{t}-\mathrm{Bu}(20)$) (molar ratio 1/1) in dichloromethane in the presence of an excess of NaClO_{4} yields the corresponding cationic complexes $\left[\mathrm{RNCPd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}_{\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{ClO}_{4} \text {. If the diisocyanide }}\right.$ $\mathrm{CN} \bigcirc \mathrm{NC}$ is used the tetranuclear complex 21 is obtained. The insertion compound $\left[\mathrm{ClPd}(\mu-\mathrm{dppm})_{2}(\mu-p \mathrm{TolNC}) \mathrm{PdC}_{6} \mathrm{Cl}_{5}\right]$ (15) reacts with NaClO_{4} in acetonitrile to give the cationic coordinated complex $\left[p-\operatorname{TolNCPd}(\mu-\mathrm{dppm})_{2}{ }^{-}\right.$ $\left.\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{ClO}_{4}$ (18). (Scheme 1 (i)).

TABLE 2
CRYSTAL DATA FOR $\mathrm{Pd}_{2}(\mu \text {-dppm })_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}$

Formula	$\mathrm{C}_{62} \mathrm{H}_{44} \mathrm{Cl}_{10} \mathrm{P}_{4} \mathrm{Pd}_{2} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$
M	1678.18
Crystal system	Triclinic
Space group	P1
$a(\mathrm{~A})$	12.986(4)
b (\AA)	13.213(5)
$c(\AA)$	21.254(6)
$\alpha\left({ }^{\circ}\right)$	90.49(3)
$\beta\left({ }^{\circ}\right)$	89.204(25)
$\gamma\left({ }^{\circ}\right)$	102.86(3)
$V\left(\AA^{3}\right)$	3554.8
Diffractometer	Enraf-Nonius CAD 4
T (K)	291 ± 1
Radiation	Mo- K_{a}
$\bar{\lambda}(\mathrm{A})$	0.71069
$\mu\left(\mathrm{Mo}-K_{\alpha}\right)\left(\mathrm{cm}^{-1}\right)$	9.5
θ-range (${ }^{\circ}$)	1-22
Mode	$\omega-2 \theta$ scans
Data measured	9156
Data used	$4474(F \geqslant 6 \sigma(F)$)
Solution	Patterson; ΔF syntheses
Refinement	Full-matrix least-squares
Model	Pd, P, Cl (not solvent) anisotropic. Rigid, planar hexagons. H atoms in calculated positions.
	Group U's for H atoms ($0.158 \AA^{2}$) and for solvent
Weighting scheme	Cl atoms ($0.237 \AA^{2}$). Solvent C atoms not located. $w^{-1}=\left[\sigma^{2}(F)+0.074 F^{2}\right]$
R	0.0902
$\boldsymbol{R}_{\boldsymbol{w}}$	0.1013
Variables	287

TABLE 3
POSITIONAL PARAMETERS AND EQUIVALENT ISOTROPIC THERMAL PARAMETERS OF REFINED ATOMS IN $\mathrm{Pd}_{2}(\mu-\mathrm{dppm})_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}$

Atom	x	y	z	$U_{\text {eq }}$
Pd(1)	0.26341 (11)	0.80501(10)	0.22913 (8)	0.0377(10)
Pd(2)	$0.35419(11)$	$0.67024(10)$	$0.28784(8)$	$0.0357(10)$
P (1)	0.1480(4)	0.6625(4)	0.1922(3)	0.042(3)
P(2)	$0.3896(4)$	0.9371 (4)	0.2716(3)	$0.050(4)$
$\mathbf{P}(3)$	0.5074(4)	0.7731(4)	0.2502(3)	0.046 (4)
P(4)	0.1859(4)	$0.5814(4)$	0.3168(3)	0.040(3)
$\mathrm{Cl}(1)$	0.2832(5)	0.9345(5)	$0.0912(3)$	$0.070(4)$
$\mathrm{Cl}(2)$	0.1356(6)	$1.0715(6)$	0.0454(4)	$0.101(6)$
Cl(3)	-0.0510(6)	1.1042(6)	0.1291 (4)	$0.108(6)$
$\mathrm{Cl}(4)$	-0.0893(6)	0.9988(6)	0.2599(4)	$0.102(6)$
$\mathrm{Cl}(5)$	0.0582(5)	0.8618(5)	0.3062(3)	$0.079(5)$
$\mathrm{Cl}(6)$	0.4731(4)	0.7492(4)	0.4262(3)	0.059(4)
Cl(7)	$0.6274(6)$	0.6451(6)	0.4957(4)	0.089(5)
$\mathrm{Cl}(8)$	$0.6715(6)$	$0.4370(6)$	0.4481(4)	0.098(6)
$\mathrm{Cl}(9)$	0.5555(6)	0.3322(5)	0.3302(4)	$0.104(6)$
$\mathrm{Cl}(10)$	0.4067(5)	0.4382(4)	0.2571(3)	0.071(4)
C(1)	0.0788(15)	0.6011(15)	$0.2630(10)$	0.045(5)
C(2)	$0.5155(16)$	0.9043(15)	$0.2858(10)$	0.046(5)
C(3)	0.1676	0.9043	0.1963	0.042(5)
$\mathrm{C}(4)$	0.1833	0.9512	0.1373	0.042(5)
C(5)	0.1164	1.0133	0.1173	0.047(5)
C(6)	0.0338	1.0287	0.1562	0.065(7)
C(7)	0.0180	0.9819	0.2151	0.073(7)
C(8)	0.0849(9)	0.9197(9)	0.2352(6)	0.042(5)
C(9)	0.4413	0.5850	0.3456	0.041(5)
C(10)	0.4908	0.6306	0.3999	0.040(5)
C(11)	0.5599	0.5827	0.4319	0.059(6)
C(12)	0.5796	0.4892	0.4095	$0.053(6)$
C(13)	0.5302	0.4436	0.3551	0.057(6)
C(14)	0.4610 (9)	0.4915(9)	0.3232(6)	0.047(5)
C(16)	-0.0576	0.6919	0.1709	0.069(7)
C(17)	-0.1335	0.7229	0.1344	0.088(9)
$\mathrm{C}(18)$	-0.1096	0.7548	0.0725	$0.091(9)$
C(19)	-0.0098	0.7557	0.0471	0.063(7)
$\mathrm{C}(20)$	0.0661	0.7247	0.0835	0.066(7)
C(15)	0.0422(12)	0.6928(13)	0.1455(6)	$0.047(5)$
C(22)	0.0979	0.4827	0.1206	0.067(7)
C(23)	0.1188	0.3958	0.0897	0.116(11)
C(24)	0.2219	0.3814	0.0861	0.097(9)
C(25)	0.3041	0.4539	0.1133	0.072(7)
C(26)	0.2832	0.5408	0.1443	0.069(7)
C(21)	0.1801(9)	0.5552(13)	0.1479(8)	0.053 (6)
C(28)	0.5041	1.0696	0.1826	0.073(7)
C(29)	0.5184	1.1525	0.1407	0.089(9)
C(30)	0.4473	1.2177	0.1411	0.096(9)
C(31)	0.3621	1.2000	0.1833	0.081(8)
C(32)	0.3479	1.1172	0.2252	0.056(6)
C(27)	$0.4189(11)$	1.0520(12)	0.2248(8)	$0.053(6)$
C(34)	0.2969	0.9273	0.3899	0.097(10)
C(35)	0.2908	0.9611	0.4519	$0.189(20)$
C(36)	0.3545	1.0554	0.4712	0.150(15)
C(37)	0.4243	1.1157	0.4286	0.123(12)

TABLE 3 (continued)

Atom	\boldsymbol{x}	y	z	$U_{\text {eq }}$
C(38)	0.4304	1.0819	0.3666	0.105(10)
C(33)	$0.3666(14)$	0.9876(13)	0.3472(11)	$0.060(6)$
C(40)	0.6393	0.6408	0.2512	0.080(8)
C(41)	0.7233	0.5999	0.2713	$0.111(11)$
C(42)	0.7919	0.6521	0.3168	0.097(9)
C(43)	0.7764	0.7453	0.3423	0.118(12)
C(44)	0.6923	0.7862	0.3223	0.089(9)
C(39)	0.6238(13)	$0.7340(13)$	0.2767(8)	0.057(6)
C(46)	0.4618	0.7863	0.1222	0.046(5)
C(47)	0.4876	0.8195	0.0606	0.078(8)
C(48)	0.5906	0.8712	0.0454	0.093(9)
C(49)	0.6678	0.8897	0.0916	0.085(8)
C(50)	0.6421	0.8565	0.1531	0.068(7)
$\mathrm{C}(45)$	0.5391(8)	0.8048(11)	$0.1684(7)$	0.050(6)
C(52)	0.1982	0.3991	0.3765	0.049(5)
C(53)	0.1893	0.2924	0.3824	0.056(6)
C(54)	0.1489	0.2258	0.3330	0.068(7)
C(55)	0.1176	0.2658	0.2777	0.068(7)
C(56)	0.1265	0.3725	0.2718	0.057(6)
C(51)	0.1669(10)	0.4391(9)	0.3212(6)	0.041(5)
C(58)	0.1975	0.6737	0.4353	$0.057(6)$
C(59)	0.1554	0.6975	0.4929	0.080(8)
C(60)	0.0478	0.6622	0.5058	0.101(10)
C(61)	-0.0176	0.6033	0.4611	$0.078(8)$
C(62)	0.0245	0.5795	0.4035	0.054(6)
C(57)	0.1321 (8)	0.6148(11)	0.3906 (7)	0.035(5)
Cl(1)	0.2560 (15)	0.8810(15)	$0.6430(10)$	0.237
$\mathrm{Cl}(12)$	$0.1554(15)$	0.6345(15)	$0.7681(10)$	0.237
$\mathrm{Cl}(13)$	$0.3947(14)$	0.4423(15)	0.9306(9)	0.237
$\mathrm{Cl}(14)$	$0.2195(15)$	0.6683(15)	0.9432(9)	0.237(4)

Finally, complex 1 reacts with an excess of p-TolNC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ but only complex 15, with inserted p-TolNC, can be isolated. If the reaction is carried out in acetonitrile and NaClO_{4} then added (in order to facilitate the formation of the cationic complex) the complex [p-TolNCPd $(\mu \text {-dppm) })_{2}(\mu-p-\mathrm{TolNC}) \mathrm{Pd}^{\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right]^{+} \text {(18) }}$ which contains both coordinated and inserted isonitrile gives $[p-\operatorname{TolNCPd}(\mu$ dppm $\left.)_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{ClO}_{4}$, containing only coordinated isonitrile.

The higher tendency of p-TolNC to give insertion products is in agreement with our previous observations on palladium(I) [1] or platinum(I) [6] pentafluorophenyl derivátives; in all these insertion processes the reactivity of the $\mathrm{Pd}-\mathrm{Pd}$ bond is lower for the pentachlorophenyl than for the pentafluorophenyl derivatives, and thus p-TolNC or CyNC can be inserted into the $\mathrm{M}-\mathrm{M}$ bond in either $\mathrm{ClPd}(\mu$ dppm $)_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ or $\mathrm{ClPt}(\mu-\mathrm{dppm})_{2} \mathrm{Pt}_{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \text {, although the } \mathrm{CyNC} \text { complex of }}$ platinum is stable only at low temperature.

Table 1 lists some relevant IR absorptions which confirm the presence of coordinated ($\nu(\mathrm{CN})$ at $2100-2200 \mathrm{~cm}^{-1}$) or inserted ($\nu(\mathrm{C}=\mathrm{N})$ at $1550-1650 \mathrm{~cm}^{-1}$) isonitriles.
$\left[\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{Pd}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right]$ does not react with $\mathrm{CO}, \mathrm{SO}_{2}$ or diazonium salts. Although complex 2 does react with p-TolNC we were unable to isolate pure products from the reaction mixture.

Structure of $\mathrm{Pd}_{2}(\mu-d p p m)_{2}\left(C_{6} \mathrm{Cl}_{5}\right)_{2}$
The structure of complex 2 was determined by single crystal X-ray diffraction. Details of the crystallographic procedures are presented in Table 2. Atomic coordinates and bond distances and angles are listed in Tables 3 and 4 respectively. The molecular structure is shown in Fig. 1 and involves two palladium centers with a Pd-Pd bond (2.6704(21) \AA) between them; two dppm ligands bridge the metal-metal bond and there is one $\mathrm{C}_{6} \mathrm{Cl}_{5}$ group per palladium atom. The environment around the palladium is almost square planar with small tetrahedral distortions (thus the dihedral angles between the planes $\mathrm{Pd}(2) \mathrm{Pd}(1) \mathrm{P}(2), \mathrm{P}(1) \mathrm{Pd}(1) \mathrm{C}(3)$ and $\mathrm{Pd}(2) \mathrm{C}(9) \mathrm{P}(4)$, $\operatorname{Pd}(2) P d(1) P(3)$ are $169.28(17)$ and $171.56(16)^{\circ}$, respectively. The angles between mutually cis-palladium-ligand bonds are in the range $83.9-97.5^{\circ}$, and the corresponding angles between mutually trans-palladium-ligand bonds are in the range $168.7-173.8^{\circ}$ (see Table 4). The chain $\mathrm{C}(9) \operatorname{Pd}(2) \operatorname{Pd}(1) \mathrm{C}(3)$ is not quite linear, and the $C(9)$ and $C(3)$ atoms lie respectively $0.363(8)$ and $0.408(8) \AA$ away from the $\operatorname{Pd}(2)-\mathrm{Pd}(1)$ line. The $\mathrm{Pd}-\mathrm{P}$ distances are in the range of $2.27-2.32 \AA$, similar to those in $\operatorname{BrPd}(\mu-\mathrm{dppm})_{2} \operatorname{PdBr}[13,14]$ or $\mathrm{ClPd}(\mu-\mathrm{dppm})_{2} \operatorname{Pd}\left(\mathrm{SnCl}_{3}\right)$ [4]. The distances $\mathrm{Pd}(1)-\mathrm{C}(3)$ and $\mathrm{Pd}(2)-\mathrm{C}(9)$ are $2.127(12)$ and $2.164(12) \AA$, respectively. The distance $\operatorname{Pd}(1)-\operatorname{Pd}(2)$ is $2.6704(21) \AA$, somewhat shorter than that in the analogous $\operatorname{BrPd}(\mu-\mathrm{dppm})_{2} \mathrm{PdBr}[13,14]$ although longer than those for other $\mathrm{Pd}-\mathrm{Pd}$ bonds $[15,16]$. The two coordination planes around the palladium atoms are twisted about the $\mathrm{Pd}(1)-\mathrm{Pd}(2)$ so that dihedral angle between them is $44.98(10)^{\circ}$. This angle is higher than for analogous palladium or platinum derivatives (cf. 39° for $\mathrm{Br} \mathrm{Pd}(\mu-$ $\mathrm{dppm})_{2} \mathrm{PdBr}[13,14] 38.6^{\circ}$ for $\mathrm{ClPt}(\mu-\mathrm{dppm})_{2} \mathrm{PtCl}$ [17] or 41.3° for $\mathrm{ClPd}(\mu-$ dppm) ${ }_{2} \mathrm{PdSnCl}_{3}$ [4]), but lower than for other $\mathrm{Pd}^{\mathrm{I}}-\mathrm{Pd}^{\mathrm{I}}$ or $\mathrm{Pd}^{\mathrm{I}}-\mathrm{Pt}^{\mathrm{I}}$ bonds in complexes which do not contain any bridging ligands between the metal atoms (i.e. 86.4° for $\left[\left(\mathrm{CH}_{3} \mathrm{NC}\right)_{6} \mathrm{Pd}_{2}\right]^{2+}[18,19], 85.3^{\circ}$ for $\left[\left(\mathrm{CH}_{3} \mathrm{NC}\right)_{4} \mathrm{Pd}_{2} \mathrm{I}_{2}\right][15], 60^{\circ}$ for $\left[\mathrm{Pt}_{2}(\mathrm{CO})_{2} \mathrm{Cl}_{4}\right]^{2-}$ [20] or 79.8° for $\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ [21].

Complex 2 is the result of an oxidative addition of the $\mathrm{Pd}-\mathrm{C}_{6} \mathrm{Cl}_{5}$ bond to the Pd^{0} center to produce a $\mathbf{P d}-\mathrm{Pd}$ bond, this contrasts with the reaction of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ with $\mathrm{C}_{6} \mathrm{Cl}_{5} \mathrm{AuPPh}_{3}$ [22] which does not give a binuclear compound with a $\mathrm{Pt}-\mathrm{Au}$ bond but instead gives [$\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{ClPt}\left(\mu-3,4,5,6-\mathrm{C}_{6} \mathrm{Cl}_{4}\right) \mathrm{AuPPh}_{3}$] as a consequence of the reaction of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ with the ortho- $\mathrm{Cl}-\mathrm{C}$ bond of the pentachlorophenyl group.

Experimental

The C, H and N analyses were carried out with a Perkin-Elmer 240-B microanalyzer. Conductivities were determined with a Phillips PW 9501/01 conductimeter. Molecular weights were determined in CHCl_{3} solution with a Knauer digital osmometer. IR spectra were recorded (in the range $4000-200 \mathrm{~cm}^{-1}$) on a Perkin-Elmer 599 spectrophotometer, with Nujol mulls between polyethylene plates.

The complexes trans $-\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}(\text { tht })_{2} \quad[23],\left[\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\text { tht })\right]_{2}$ [24] and $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}$ [25] were prepared as described elsewhere.

The starting palladium(II) complexes were prepared as follows.
$\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}(\mathrm{dppm})_{2}$. A mixture of $1 \mathrm{~g}(1.27 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}(\mathrm{tht})_{2}$ and $1.229 \mathrm{~g}(3.199 \mathrm{mmol})$ of dppm in 80 ml of toluene was refluxed for 3 h . The solution was evaporated to dryness and the residue was extracted in 20 ml of dichloromethane. The solution was evaporated to $\sim 10 \mathrm{ml}$ and the addition of $\sim 15 \mathrm{ml}$ of

TABLE 4
BOND DISTANCES (\AA) AND BOND ANGLES $\left({ }^{\circ}\right)$ FOR $\operatorname{Pd}_{2}(\mu \text {-dppri) })_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}$

$\mathrm{Pd}(1)-\mathrm{Pd}(2)$	$2.6704(21)$	$\mathrm{P}(3)-\mathrm{C}(45)$	1.811(15)
$\mathrm{Pd}(1)-\mathrm{P}(1)$	2.271 (6)	$\mathrm{P}(4)-\mathrm{C}(1)$	1.877(21)
$\mathrm{Pd}(1)-\mathrm{P}(2)$	2.299(6)	$\mathrm{P}(4)-\mathrm{C}(51)$	1.844(14)
Pd(1)-C(3)	2.127(12)	$\mathrm{P}(4)-\mathrm{C}(57)$	1.800(14)
Pd(2)-P(3)	2.284(6)	$\mathrm{Cl}(1)-\mathrm{C}(4)$	1.667(14)
Pd(2)-P(4)	$2.316(5)$	$\mathrm{Cl}(2)-\mathrm{C}(5)$	1.705(15)
$\mathrm{Pd}(2)-\mathrm{C}(9)$	2.164(12)	$\mathrm{Cl}(3)-\mathrm{C}(6)$	1.748(15)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.840(21)	Cl(4)-C(7)	1.731(15)
$\mathbf{P}(1)-\mathrm{C}(15)$	1.823(16)	$\mathrm{Cl}(5)-\mathrm{C}(8)$	1.694(14)
$\mathbf{P (1) - C (2 1) ~}$	1.817(17)	$\mathrm{Cl}(6)-\mathrm{C}(10)$	$1.720(13)$
$\mathrm{P}(2)-\mathrm{C}(2)$	1.812(22)	$\mathrm{Cl}(7)-\mathrm{C}(11)$	1.727 (14)
$\mathrm{P}(2)-\mathrm{C}(27)$	$1.788(17)$	$\mathrm{Cl}(8)-\mathrm{C}(12)$	1.725(14)
$P(2)-C(33)$	1.781 (20)	Cl(9)-C(13)	1.660(14)
$\mathrm{P}(3)-\mathrm{C}(2)$	1.869(22)	$\mathrm{Cl}(10)-\mathrm{C}(14)$	1.660(14)
$P(3)-C(39)$	1.802(18)		
$\mathrm{Pd}(2)-\mathrm{Pd}(1)-\mathrm{P}(1)$	85.51(15)	$\mathrm{Pd}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	117.8(9)
$\mathbf{P d}(2)-\mathrm{Pd}(1)-\mathrm{P}(2)$	88.32(16)	$\mathrm{Cl}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	120.1(10)
$\mathrm{Pd}(2)-\mathrm{Pd}(1)-\mathrm{C}(3)$	168.7(3)	$\mathrm{Cl}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	119.9(10)
$\mathbf{P}(1)-\mathbf{P d}(1)-\mathbf{P}(2)$	173.82(21)	$\mathrm{Cl}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	120.3(10)
$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{C}(3)$	91.4(4)	$\mathrm{Cl}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	119.7(10)
$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{C}(3)$	94.8(4)	$\mathrm{Cl}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	119.1(10)
$\mathbf{P d}(1)-\mathrm{Pd}(2)-\mathrm{P}(3)$	83.90 (15)	$\mathrm{Cl}(3)-\mathrm{C}(6)-\mathrm{C}(7)$	120.8(10)
$\mathrm{Pd}(1)-\mathrm{Pd}(2)-\mathrm{P}(4)$	87.39(14)	$\mathrm{Cl}(4)-\mathrm{C}(7)-\mathrm{C}(6)$	118.0(10)
$\mathrm{Pd}(1)-\mathrm{Pd}(2)-\mathrm{C}(9)$	169.6 (3)	$\mathrm{Cl}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	122.0(10)
$P(3)-P d(2)-P(4)$	171.22(20)	$\mathrm{Cl}(5)-\mathrm{C}(8)-\mathrm{C}(3)$	122.6(10)
$\mathrm{P}(3)-\mathrm{Pd}(2)-\mathrm{C}(9)$	91.3(4)	$\mathrm{Cl}(5)-\mathrm{C}(8)-\mathrm{C}(7)$	117.3(10)
$\mathbf{P}(4)-\mathrm{Pd}(2)-\mathrm{C}(9)$	97.5(3)	Pd(2)-C(9)-C(10)	120.0(9)
$\mathbf{P d}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	104.5(7)	Pd(2)-C(9)-C(14)	119.3(9)
$\mathbf{P d}(1)-\mathrm{P}(1)-\mathrm{C}(15)$	113.7(5)	$\mathrm{Cl}(6)-\mathrm{C}(10)-\mathrm{C}(9)$	120.8(9)
$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	126.8(6)	$\mathrm{Cl}(6)-\mathrm{C}(10)-\mathrm{C}(11)$	119.1(9)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(15)$	103.5(8)	$\mathrm{Cl}(7)-\mathrm{C}(11)-\mathrm{C}(10)$	119.1(9)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	104.2(9)	$\mathrm{Cl}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	120.7(10)
$\mathrm{C}(15)-\mathrm{P}(1)-\mathrm{C}(21)$	101.7(7)	$\mathrm{Cl}(8)-\mathrm{C}(12)-\mathrm{C}(11)$	118.2(9)
$\mathrm{Pd}(1)-\mathrm{P}(2)-\mathrm{C}(2)$	114.8(7)	$\mathrm{Cl}(8)-\mathrm{C}(12)-\mathrm{C}(13)$	121.7(10)
Pd(1)-P(2)-C(27)	113.8(6)	$\mathrm{Cl}(9)-\mathrm{C}(13)-\mathrm{C}(12)$	$118.5(10)$
Pd(1)-P(2)-C(33)	119.3(7)	C1(9)-C(13)-C(14)	121.5(10)
$\mathbf{C}(2)-\mathrm{P}(2)-\mathrm{C}(27)$	105.7(9)	$\mathrm{Cl}(10)-\mathrm{C}(14)-\mathrm{C}(9)$	120.8(10)
$\mathrm{C}(2)-\mathrm{P}(2)-\mathrm{C}(33)$	99.3(10)	$\mathrm{Cl}(10)-\mathrm{C}(14)-\mathrm{C}(13)$	119.1(9)
$\mathrm{C}(27)-\mathrm{P}(2)-\mathrm{C}(33)$	101.9(8)	$\mathrm{P}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	122.2(12)
$\mathbf{P d}(2)-\mathbf{P}(3)-\mathbf{C}(2)$	106.1(7)	$\mathrm{P}(1)-\mathrm{C}(15)-\mathrm{C}(20)$	117.6(11)
$\mathrm{Pd}(2)-\mathrm{P}(3)-\mathrm{C}(39)$	113.1(6)	$\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	118.4(12)
$\mathrm{Pd}(2)-\mathrm{P}(3)-\mathrm{C}(45)$	126.2(5)	$\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(26)$	121.4(12)
$\mathbf{C}(2)-\mathrm{P}(3)-\mathrm{C}(39)$	104.9(9)	$\mathrm{P}(2)-\mathrm{C}(27)-\mathrm{C}(28)$	120.5(12)
$\mathrm{C}(2)-\mathrm{P}(3)-\mathrm{C}(45)$	101.8(8)	$\mathrm{P}(2)-\mathrm{C}(27)-\mathrm{C}(32)$	119.0(12)
$\mathrm{C}(39)-\mathrm{P}(3)-\mathrm{C}(45)$	102.6(7)	$\mathrm{P}(2)-\mathrm{C}(33)-\mathrm{C}(34)$	120.4(15)
$\mathbf{P d}(2)-\mathbf{P}(4)-\mathrm{C}(1)$	114.5(7)	$\mathrm{P}(2)-\mathrm{C}(33)-\mathrm{C}(38)$	119.0(15)
$\mathrm{Pd}(2)-\mathrm{P}(4)-\mathrm{C}(51)$	115.4(5)	$\mathrm{P}(3)-\mathrm{C}(39)-\mathrm{C}(40)$	115.1(13)
Pd(2)-P(4)-C(57)	118.2(5)	P(3)-C(39)-C(44)	124.8(13)
$\mathrm{C}(1)-\mathrm{P}(4)-\mathrm{C}(51)$	104.0(8)	P(3)-C(45)-C(46)	121.7(10)
$\mathrm{C}(1)-\mathrm{P}(4)-\mathrm{C}(57)$	99.3(8)	$\mathrm{P}(3)-\mathrm{C}(45)-\mathrm{C}(50)$	118.1(10)
$\mathrm{C}(51)-\mathrm{P}(4)-\mathrm{C}(57)$	103.2(6)	$\mathrm{P}(4)-\mathrm{C}(51)-\mathrm{C}(52)$	116.8(9)
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(4)$	105.2(10)	$\mathrm{P}(4)-\mathrm{C}(51)-\mathrm{C}(56)$	123.2(10)
$\mathrm{P}(2)-\mathrm{C}(2)-\mathrm{P}(3)$	106.4(11)	$\mathrm{P}(4)-\mathrm{C}(57)-\mathrm{C}(58)$	120.4(10)
$\mathrm{Pd}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	122.2(9)	$\mathrm{P}(4)-\mathrm{C}(57)-\mathrm{C}(62)$	119.6(10)

(a)

(b)

Fig. 1. Perspective views of $\mathrm{Pd}_{2}(\mu \text { - } \mathrm{dppm})_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}$ (2): (a) Full molecule; (b) Central fraction with Ph rings removed, showing numbering of key atoms.
ethanol gave the white solid $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}(\mathrm{dppm})_{2}$, which was washed with diethyl ether (73% yield).
$\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{dppm})_{2}$. This was made in a similar way from $1 \mathrm{~g}(1.04 \mathrm{mmol})$ of $\left[\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{tht})\right]_{2}$ and $2.0045 \mathrm{~g}(5.215 \mathrm{mmol})$ of dppm in 200 ml of toluene (Yield 74\%).

Typical procedures for the synthesis of the complexes are given below.
$X P d(\mu-d p p m)_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{X}=\mathrm{Cl}(1), \mathrm{C}_{6} \mathrm{Cl}_{5}\right.$ (2))
A mixture of $\operatorname{PdX}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\boldsymbol{\eta}^{1}-\mathrm{dppm}\right)_{2}\left(\mathrm{X}=\mathrm{Cl}, 1 \mathrm{~g}(0.862 \mathrm{mmol}) ; \mathrm{X}=\mathrm{C}_{6} \mathrm{Cl}_{5}, 0.6\right.$ $\mathrm{g}(0.436 \mathrm{mmol})$) and $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}\left(\mathrm{X}=\mathrm{Cl}, 0.446 \mathrm{~g}(0.431 \mathrm{mmol}), \mathrm{X}=\mathrm{C}_{6} \mathrm{Cl}_{5}\right.$, $0.229 \mathrm{~g}(0.218 \mathrm{mmol})$) in 80 ml of deoxygenated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was refluxed under N_{2} for 3 h . The solution was then evaporated to dryness and the residue was washed with 20 ml of $\mathrm{Et}_{2} \mathrm{O}$ to give respectively a yellow $1(90 \%)$ or an orange complex $2(77 \%)$. Complexes 1 and 2 crystallize with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, that can be removed by keeping the solid at $80^{\circ} \mathrm{C}$ for 4 h .

Crystals of 2 (as its $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ solvate) suitable for the diffraction study were obtained by dissolving 0.050 g of the compound in $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}(1 \mathrm{ml})$ and adding an upper layer of n -hexane (4 ml).
$X P d(\mu-d p p m)_{2} P d\left(C_{6} C l_{5}\right)(X=\operatorname{Br}(3), I(4), \operatorname{SCN}(5), C N O(6))$
To a suspension of $0.2 \mathrm{~g}(0.157 \mathrm{mmol})$ of complex 1 in 30 ml of ethanol was added a solution of 0.90 mmol of $\mathrm{MX}(\mathrm{MX}=\mathrm{LiBr}, \mathrm{NaI}, \mathrm{KSCN}, \mathrm{KCNO})$ in 1 ml of $\mathrm{H}_{2} \mathrm{O}$. The mixture was stirred for $6 \mathrm{~h}(22 \mathrm{~h}$ for the KCNO) at room temperature, then the solid was filtered off and washed successively with $4 \times 10 \mathrm{ml}$ of methanol, 10 ml of $\mathrm{H}_{2} \mathrm{O}$, and 10 ml of methanol. The resulting solid was dried at $80^{\circ} \mathrm{C}$ for 4 h (Yields 80-90\%).
$\mathrm{SnCl}_{3} \mathrm{Pd}(\mu-d p p m)_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ (7)
To $0.1 \mathrm{~g}(0.078 \mathrm{mmol})$ of 1 in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{SnCl}_{2}(0.014 \mathrm{~g}, 0.078$ mmol) in 5 ml of ethanol, and the mixture was stirred for 1 h at room temperature then partially evaporated. Addition of 10 ml of diethyl ether produced orange crystals of 7 (78% yield).
$\left[\mathrm{LPd}(\mu-d p p m)_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{BPh}_{4}\left(\mathrm{~L}=\mathrm{PPh}_{3}(8), \mathrm{P}(\mathrm{OPh})_{3}(9), \mathrm{AsPh}_{3}(10) \mathrm{SbPh}_{3}(11)\right.$, tht (12))

A mixture of $0.1 \mathrm{~g}(0.078 \mathrm{mmol})$ of complex 6 and 0.078 mmol of $\mathrm{L}\left(\mathrm{PPh}_{3}\right.$, $\mathrm{P}(\mathrm{OPh})_{3}, \mathrm{AsPh}_{3}, \mathrm{SbPh}_{3}$, tht $)$ in 30 ml of methanol was stirred at room temperature for 15 min then $0.027 \mathrm{~g}(0.078 \mathrm{mmol})$ of NaBPh_{4} was added and the mixture was stirred for 30 min . The suspension was filtered off and the resulting solid was washed successively with 10 ml of water, $2 \times 10 \mathrm{ml}$ of ethanol, and 10 ml of $\mathrm{Et}_{2} \mathrm{O}$.

The products were recrystallized from various solvents as follows: 8, 11 from acetone $/ \mathrm{Et}_{2} \mathrm{O}$; 9, from dichloromethane/hexane; 10, from dichloromethane/ $\mathrm{Et}_{2} \mathrm{O}$. The crystals of complex 10 was heated at $80^{\circ} \mathrm{C}$ for 2 h to remove $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yields: 6, $75 \% ; 9,51 \% ; 10,50 \% ; 11,67 \% ; 12,50 \%$.
$\left[\mathrm{ClPd}(\mu-d p p m)_{2}\left(\mu-p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{BF}_{4}$ (13)
To a solution of $0.1 \mathrm{~g}(0.078 \mathrm{mmol})$ of complex 1 in 50 ml of deoxygenated acetone at $-20^{\circ} \mathrm{C}$ was added $0.0162 \mathrm{~g}(0.078 \mathrm{mmol})$ of $\left[p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right] \mathrm{BF}_{4}$ and the mixture was stirred for 30 min , as the solution was allowed to warm to room temperature. The solution was then evaporated to ca. 5 ml and by 10 ml of diethyl ether was added to produce an orange precipitate, which was washed with 10 ml of $\mathrm{Et}_{2} \mathrm{O}$ then the compound recrystallized from acetone/ $\mathrm{Et}_{2} \mathrm{O}$ and dried at $80^{\circ} \mathrm{C}$ for 5 h (86% yield).

$\mathrm{ClPd}(\mu-d p p m)_{2}\left(\mu-\mathrm{SO}_{2}\right) \mathrm{PdC}_{6} \mathrm{Cl}_{5}(14)$

SO_{2} was bubbled for 30 min through a solution of $1(0.15 \mathrm{~g},(0.118 \mathrm{mmol})$) in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2} .10 \mathrm{ml}$ of n -hexane were added to give a precipitate of 14 . Yield 96%.
$\mathrm{ClPd}(\mu-d p p m)_{2}(\mu-\mathrm{CN}-\mathrm{p}-\mathrm{Tol}) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ (15)
A solution of $0.150 \mathrm{~g}(0.118 \mathrm{mmol})$ of complex 1 and $15 \mu 1(0.119 \mathrm{mmol})$ of p-TolNC in 40 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature for 2 h . The solution was partially evaporated and addition of n-hexane then gave complex 15 (86% yield).
$\left[R N C P d(\mu-d p p m)_{2} \operatorname{Pd}\left(C_{6} C l_{5}\right)\right] C l(R=C y(16), t-B u(17))$
A mixture of $0.230 \mathrm{~g}(0.182 \mathrm{mmol})$ of complex 1 and 0.248 mmol of CNR ($\mathrm{R}=\mathrm{Cy}, \mathrm{t}-\mathrm{Bu}$) in 30 ml of acetone was stirred at room temperature for 3 h , then the solution was evaporated to ca .5 ml and 10 ml of diethyl ether were added. The precipitates were filtered off and washed with diethyl ether; complex 16 was obtained in 72% yield, and 17 was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ in the presence of some free isonitrile (to give a 62% yield).
$\left[\mathrm{RNCPd}(\mu-d p p m)_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right] \mathrm{ClO}_{4}$
$R=p$-Tol (18). A mixture of $0.1 \mathrm{~g}(0.072 \mathrm{mmol})$ of $\mathrm{ClPd}(\mu-\mathrm{dppm})_{2}(\mu-$ $\mathrm{CNTol}) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ (15) and $0.042 \mathrm{~g}(0.343 \mathrm{mmol})$ of NaClO_{4} in 30 ml of acetonitrile was stirred for 1 h at room temperature. The solution was evaporated to ca. 2 ml and the yellow crystals obtained were washed with ethanol, water, and ethanol (to give $18,56 \%$ yield).
$R=C y(19),{ }^{t} B u(20) . \quad$ A solution of $0.15 \mathrm{~g}(0.118 \mathrm{mmol})$ of complex 1 and 0.124 mmol of $\mathrm{RNC}\left(\mathrm{R}=\mathrm{Cy},{ }^{\mathrm{t}} \mathrm{Bu}\right)$ in 30 ml of dichloromethane was stirred at room temperature for 15 min and then $0.040 \mathrm{~g}(0.326 \mathrm{mmol})$ of NaClO_{4} in 3 ml of ethanol was added. The solution was stirred at room temperature for 30 min and then evaporated to ca. 2 ml . The complex (19 or 20) which separated was washed with water and ethanol to give 19 (70% yield) or 20; the latter was recrystallized from acetone $/ \mathrm{Et}_{2} \mathrm{O}$ (74% yield).
$\left[\mu-C N R N C\left\{P d(\mu-d p p m)_{2} \mathrm{Pd}^{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{R}=\mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{4}\right)(21)$
To a solution of $0.1 \mathrm{~g}(0.078 \mathrm{mmol})$ of complex 1 in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.040 \mathrm{~g}$ $(0.326 \mathrm{mmol})$ of NaClO_{4} was added $0.005 \mathrm{~g}(0.039 \mathrm{mmol})$ of $p-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{NC})_{2}$ and the mixture was stirred for 6 h at room temperature. The yellow solution was filtered then evaporated to ca .5 ml and 10 ml of diethyl ether was added to give a yellow solid (21), which was recrystallized from acetone/n-hexane (40% yield).

Acknowledgement

We thank the CAICYT (Spain) for financial support and the Scientific Office of NATO for a travel grant.

References

[^1]9 It appears as a shoulder of an internal absorption of the dppm located at $1022 \mathrm{~cm}^{-1}$.
10 D.M.P. Mingos, Trans. Met. Chem., 3 (1978) 1.
11 K. Nakamoto, Infrared spectra of Inorganic and Coordination Compounds 2nd Ed., Wiley-Interscience, New York, 1970, p. 187.
12 D.F. Schriver and M.P. Johnson, Inorg. Chem., (1967) 1265.
13 R.G. Holloway, B.R. Penfold, R. Colton and J. McCormick, J. Chem. Soc., Chem. Commun., (1976) 485.

14 R. Colton, M.J. McCormick and D. Pannan, Aust. J. Chem., 31 (1978) 1425.
15 N.M. Rutherford, M.M. Olmstead and A.L. Balch, Inorg. Chem., 23 (1984) 2833.
16 A. Ducruix, H. Felkin, C. Pascard and G.K. Turner, J. Chem. Soc., Chem. Commun., (1975) 615.
17 Lj. Manojlović-Muir, K.W. Muir and T. Solomun, Acta Cryst., B35 (1979) 1237.
18 D.J. Doonan, A.L. Balch, S.Z. Goldberg, R. Eisenberg and J.S. Miller, J. Am. Chem. Soc., 97 (1975) 1961.

19 S.Z. Goldberg and R. Eisenberg, Inorg. Chem., 15 (1976) 535.
20 A. Modinos and P. Woodward, J. Chem. Soc., Dalton Trans., (1975) 1516.
21 R. Usón, J. Forniés, P. Espinet, C. Fortuño, M. Tomás and A.J. Welch, unpublished results.
22 O. Rossell and J. Sales, Inorg. Chim. Acta, 64 (1981) L43.
23 R. Usón, J. Forniés, R. Navarro, M.P. García and B. Bergareche, Inorg. Chim. Acta, 25 (1977) 269.
24 R. Usbn, J. Forniés, R. Navarro and M.P. García, Inorg. Chim. Acta, 33 (1979) 69.
25 T. Ukai, H. Kuwazura, Y. Ishii, J. Bonnet and J. Ibers, J. Organomet. Chem., 65 (1974) 253.
26 B.J. Hathaway and A.E. Underhill, J. Chem. Soc., (1961) 3091.

[^0]: * Dedicated to Prof. Dr. R. Usón on the occasion of his 60 th birthday.

[^1]: 1 R. Usón, J. Forniés, P. Espinet, F. Martinez, C. Fortuño and B. Mènjón, J. Organomet. Chem., 256 (1983) 365.

 2 R. Usbon, J. Forniés, P. Espinet and C. Fortuño, Inorg. Chim. Acta, 87 (1984) 207.
 3 (a) M.M. Olmstead, H. Hope, L.S. Benner and A.L. Balch, J. Am. Chem. Soc., 99 (1977) 5502; (b) A.D. Rattray and D. Antton, Inorg. Chim. Acta, 27 (1978) L85; (c) L.S. Benner, M.M. Olmstead, H. Hope and A.L. Balch, J. Organomet. Chem., 153 (1978) C31; (d) L.S. Benner and A.L. Balch, J. Am. Chem. Soc., 100 (1978) 6099; (e) A.L. Balch, C.H.L. Lee, C.H. Lindsay and M.M. Olmstead, J. Organomet. Chem., 177 (1979) C22; (f) A.L. Balch, L.S. Benner and M.M. Olmstead, Inorg. Chem., 78 (1979) 2996.
 4 M.M. Olmstead, L.S. Benner, H. Hope and A.L. Balch, Inorg. Chim. Acta, 32 (1979) 193.
 5 M.G. Grossel, R.P. Moulding and K.R. Seddon, Inorg. Chim. Acta, 64 (1982) L275.
 6 R. Usón, J. Forniés, P. Espinet and C. Fortuño. J. Chem. Soc., Dalton Trans., in press.
 7 J. Casabó, J.M. Coronas and J. Sales, Inorg. Chim. Acta, 11 (1974) 5.
 8 N.N. Greenwood, J. Chem. Soc., (1959) 3811.

